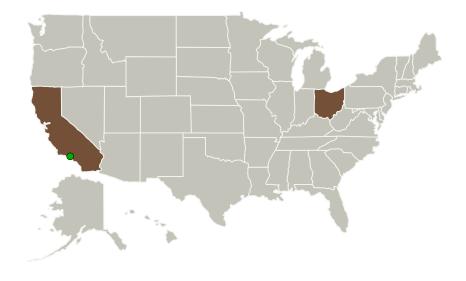
Ultra-Lightweight MG Syntactic for Insulation in Extreme Environments, Phase I


Completed Technology Project (2017 - 2017)

Project Introduction

CRG proposes to demonstrate MG Syntactic as an incompressible, blockformat, high-temperature insulation material for future Venus landers, Jupiter atmospheric probes, and other harsh environment space exploration applications. The MG Syntactic insulation includes a combination of (1) CRG's proprietary high temperature stable MG Resin as a binder, (2) light weight and high temperature insulation fillers for reduced weight and thermal conductivity, and (3) fiber reinforcements for structural performance as needed. The resulting material is incompressible, inherently tough compared with microporous ceramics, machinable, easy to work with, and highly conformable. Most importantly, its density is approximately 25% that of its ceramic counterparts and its porosity is closed-cell so the density of the gas environment that it's in should have no bearing on its thermal conductivity. All of these benefits translate to a lighter weight, more reliable insulation system in support of longer mission durations.

Primary U.S. Work Locations and Key Partners

Ultra-Lightweight MG Syntactic for Insulation in Extreme Environments, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Ultra-Lightweight MG Syntactic for Insulation in Extreme Environments, Phase I


Completed Technology Project (2017 - 2017)

Organizations Performing Work	Role	Туре	Location
Cornerstone Research Group, Inc.	Lead Organization	Industry	Miamisburg, Ohio
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations	
California	Ohio

Images

Briefing Chart Image

Ultra-Lightweight MG Syntactic for Insulation in Extreme Environments, Phase I Briefing Chart Image (https://techport.nasa.gov/image/126970)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Cornerstone Research Group, Inc.

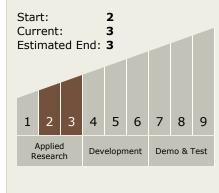
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Brian E Henslee

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Ultra-Lightweight MG Syntactic for Insulation in Extreme Environments, Phase I

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - └─ TX14.2 Thermal Control
 Components and Systems
 └─ TX14.2.4 Insulation

and Interfaces

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

